最近正在進(jìn)行ETL后臺(tái)系統(tǒng)數(shù)據(jù)的日志分析,查看運(yùn)行耗時(shí)長(zhǎng)的TASK,并找出耗時(shí)長(zhǎng)的JOB,進(jìn)行邏輯層面和數(shù)據(jù)庫(kù)層面的優(yōu)化.本文僅從數(shù)據(jù)庫(kù)層面上的優(yōu)化著手(包括SQL語(yǔ)句的調(diào)整以及greenplum table dk的調(diào)整).查看一個(gè)耗時(shí)30分鐘左右的JOB,找到相應(yīng)的源表,進(jìn)行如下分析:
dw=#select gp_segment_id, count ( * ) from tb_name group by gp_segment_id order by count ( * ) desc
gp_segment_id count
----------------------
65 16655
說(shuō)明:gp_segment_id是greenplum table里面的一個(gè)隱藏列,用來(lái)標(biāo)記該行屬于哪個(gè)節(jié)點(diǎn).由此可見(jiàn),該表只分布在一個(gè)節(jié)點(diǎn)65上(節(jié)點(diǎn)信息請(qǐng)查看gp_segment_configuration),而我的gp總共有96個(gè)節(jié)點(diǎn),這顯然沒(méi)有利用到gp多節(jié)點(diǎn)運(yùn)算能力,該表的DK值設(shè)置的有問(wèn)題.因此,使用alter table tb_name set distributed by (col1,...)對(duì)表的DK值進(jìn)行重新設(shè)置.然后重新運(yùn)行上面的語(yǔ)句,一方面觀察節(jié)點(diǎn)數(shù)(是否每個(gè)節(jié)點(diǎn)都分布了),另一方面觀察節(jié)點(diǎn)的條數(shù)(分布是否平衡)。在上述二項(xiàng)觀察指標(biāo)大致滿足要求后,請(qǐng)vacuum full、vacuum analyze一樣,徹底回收空間+收集統(tǒng)計(jì)信息。把耗時(shí)長(zhǎng)JOB的源表抓出來(lái),逐個(gè)分析,整個(gè)TASK的執(zhí)行時(shí)長(zhǎng)從3小時(shí)縮短到2小時(shí)左右(主要是之前表設(shè)計(jì)的太差,才導(dǎo)致有這么大的優(yōu)化空間),后期就是對(duì)邏輯以及SQL的優(yōu)化,以及提高并發(fā)度,這才是王道。
為了統(tǒng)計(jì)分析方便,設(shè)計(jì)了如下二張表和若干function,用來(lái)收集表的分布情況,并發(fā)現(xiàn)哪些表需要進(jìn)行重新調(diào)整DK值。
-- 二張表 CREATE TABLE " public "."table_segment_statistics" ( "table_name" varchar ( 200 ) DEFAULT NULL , "segment_count" int4 DEFAULT NULL , "table_rows" int8 DEFAULT NULL ); CREATE TABLE " public "."table_segment_statistics_balance" ( "table_name" varchar ( 200 ) DEFAULT NULL , "segment_id" int4 DEFAULT NULL , "segment_count" int8 DEFAULT NULL ); -- function CREATE OR REPLACE FUNCTION " public "."analyze_table_dk_balance"(v_schemaname varchar ) RETURNS "pg_catalog"."int4" AS $BODY$ DECLARE v_tb varchar ( 200 ); v_cur_tb cursor for select schemaname || ' . ' || tablename from pg_tables where schemaname <> ' information_schema ' and schemaname <> ' pg_catalog ' and schemaname <> ' gp_toolkit ' and tablename not like ' %prt% ' and schemaname = v_schemaname; BEGIN truncate table public .table_segment_statistics; truncate table public .table_segment_statistics_balance; open v_cur_tb; loop fetch v_cur_tb into v_tb; if not found THEN exit ; end if ; execute ' insert into public.table_segment_statistics select ''' || v_tb || ''' as table_name,count(*) as segment_id,sum(num) as table_rows from (select gp_segment_id,count(*) num from ' || v_tb || ' group by gp_segment_id) t ' ; execute ' insert into public.table_segment_statistics_balance select ''' || v_tb || ''' as table_name,gp_segment_id,count(*) as cnt from ' || v_tb || ' group by gp_segment_id order by gp_segment_id ' ; end loop; RETURN 0 ; end ; $BODY$ LANGUAGE ' plpgsql ' VOLATILE;
分析的語(yǔ)句如下:
-- 96指的是greenplum的節(jié)點(diǎn)(我的機(jī)器是96個(gè)) select * from public .table_segment_statistics where table_rows is not null and segment_count < 96 and table_rows > 10000 order by table_rows desc ; -- 找出比平均值超出10%的節(jié)點(diǎn),這個(gè)閥值可以自行調(diào)整,另:只統(tǒng)計(jì)超過(guò)1萬(wàn)行的表,小表沒(méi)有太大的分析意義 select a."table_name",b.segment_id,a.table_rows / a.segment_count as reldk,b.segment_count from " public ".table_segment_statistics a inner join " public ".table_segment_statistics_balance b on a."table_name" = b."table_name" where a."table_name" is not null and a.table_rows > 10000 and abs (a.table_rows / a.segment_count - b.segment_count) / (a.table_rows / a.segment_count) > 0.1
?
更多文章、技術(shù)交流、商務(wù)合作、聯(lián)系博主
微信掃碼或搜索:z360901061

微信掃一掃加我為好友
QQ號(hào)聯(lián)系: 360901061
您的支持是博主寫(xiě)作最大的動(dòng)力,如果您喜歡我的文章,感覺(jué)我的文章對(duì)您有幫助,請(qǐng)用微信掃描下面二維碼支持博主2元、5元、10元、20元等您想捐的金額吧,狠狠點(diǎn)擊下面給點(diǎn)支持吧,站長(zhǎng)非常感激您!手機(jī)微信長(zhǎng)按不能支付解決辦法:請(qǐng)將微信支付二維碼保存到相冊(cè),切換到微信,然后點(diǎn)擊微信右上角掃一掃功能,選擇支付二維碼完成支付。
【本文對(duì)您有幫助就好】元
