日韩久久久精品,亚洲精品久久久久久久久久久,亚洲欧美一区二区三区国产精品 ,一区二区福利

淺談Python小波分析庫Pywavelets的一點使用心得

系統(tǒng) 2672 0

本文介紹了Python小波分析庫Pywavelets,分享給大家,具體如下:

            
# -*- coding: utf-8 -*- 
import numpy as np
import math
import matplotlib.pyplot as plt
import pandas as pd
import datetime 
from scipy import interpolate
from pandas import DataFrame,Series

import numpy as np 
import pywt 

data = np.linspace(1, 4, 7) 

# pywt.threshold方法講解: 
#        pywt.threshold(data,value,mode ='soft',substitute = 0 ) 
#        data:數(shù)據(jù)集,value:閾值,mode:比較模式默認(rèn)soft,substitute:替代值,默認(rèn)0,float類型 

#data:  [ 1.  1.5 2.  2.5 3.  3.5 4. ] 
#output:[ 6.  6.  0.  0.5 1.  1.5 2. ] 
#soft 因為data中1小于2,所以使用6替換,因為data中第二個1.5小于2也被替換,2不小于2所以使用當(dāng)前值減去2,,2.5大于2,所以2.5-2=0.5..... 

print(pywt.threshold(data, 2, 'soft',6))  


#data:  [ 1.  1.5 2.  2.5 3.  3.5 4. ] 
#hard data中絕對值小于閾值2的替換為6,大于2的不替換 
print (pywt.threshold(data, 2, 'hard',6)) 


#data:  [ 1.  1.5 2.  2.5 3.  3.5 4. ] 
#data中數(shù)值小于閾值的替換為6,大于等于的不替換 
print (pywt.threshold(data, 2, 'greater',6) )

print (data )
#data:  [ 1.  1.5 2.  2.5 3.  3.5 4. ] 
#data中數(shù)值大于閾值的,替換為6 
print (pywt.threshold(data, 2, 'less',6) )
          

[6. 6. 0. 0.5 1. 1.5 2. ]
[6. 6. 2. 2.5 3. 3.5 4. ]
[6. 6. 2. 2.5 3. 3.5 4. ]
[1. 1.5 2. 2.5 3. 3.5 4. ]
[1. 1.5 2. 6. 6. 6. 6. ]

            
#!/usr/bin/env python
# -*- coding: utf-8 -*-

import numpy as np
import matplotlib.pyplot as plt

import pywt
import pywt.data


ecg = pywt.data.ecg()

data1 = np.concatenate((np.arange(1, 400),
            np.arange(398, 600),
            np.arange(601, 1024)))
x = np.linspace(0.082, 2.128, num=1024)[::-1]
data2 = np.sin(40 * np.log(x)) * np.sign((np.log(x)))

mode = pywt.Modes.smooth


def plot_signal_decomp(data, w, title):
  """Decompose and plot a signal S.
  S = An + Dn + Dn-1 + ... + D1
  """
  w = pywt.Wavelet(w)#選取小波函數(shù)
  a = data
  ca = []#近似分量
  cd = []#細(xì)節(jié)分量
  for i in range(5):
    (a, d) = pywt.dwt(a, w, mode)#進(jìn)行5階離散小波變換
    ca.append(a)
    cd.append(d)

  rec_a = []
  rec_d = []

  for i, coeff in enumerate(ca):
    coeff_list = [coeff, None] + [None] * i
    rec_a.append(pywt.waverec(coeff_list, w))#重構(gòu)

  for i, coeff in enumerate(cd):
    coeff_list = [None, coeff] + [None] * i
    if i ==3:
      print(len(coeff))
      print(len(coeff_list))
    rec_d.append(pywt.waverec(coeff_list, w))

  fig = plt.figure()
  ax_main = fig.add_subplot(len(rec_a) + 1, 1, 1)
  ax_main.set_title(title)
  ax_main.plot(data)
  ax_main.set_xlim(0, len(data) - 1)

  for i, y in enumerate(rec_a):
    ax = fig.add_subplot(len(rec_a) + 1, 2, 3 + i * 2)
    ax.plot(y, 'r')
    ax.set_xlim(0, len(y) - 1)
    ax.set_ylabel("A%d" % (i + 1))

  for i, y in enumerate(rec_d):
    ax = fig.add_subplot(len(rec_d) + 1, 2, 4 + i * 2)
    ax.plot(y, 'g')
    ax.set_xlim(0, len(y) - 1)
    ax.set_ylabel("D%d" % (i + 1))


#plot_signal_decomp(data1, 'coif5', "DWT: Signal irregularity")
#plot_signal_decomp(data2, 'sym5',
#          "DWT: Frequency and phase change - Symmlets5")
plot_signal_decomp(ecg, 'sym5', "DWT: Ecg sample - Symmlets5")


plt.show()
          

72
5

淺談Python小波分析庫Pywavelets的一點使用心得_第1張圖片

將數(shù)據(jù)序列進(jìn)行小波分解,每一層分解的結(jié)果是上次分解得到的低頻信號再分解成低頻和高頻兩個部分。如此進(jìn)過N層分解后源信號X被分解為:X = D1 + D2 + … + DN + AN 其中D1,D2,…,DN分別為第一層、第二層到等N層分解得到的高頻信號,AN為第N層分解得到的低頻信號。

以上就是本文的全部內(nèi)容,希望對大家的學(xué)習(xí)有所幫助,也希望大家多多支持腳本之家。


更多文章、技術(shù)交流、商務(wù)合作、聯(lián)系博主

微信掃碼或搜索:z360901061

微信掃一掃加我為好友

QQ號聯(lián)系: 360901061

您的支持是博主寫作最大的動力,如果您喜歡我的文章,感覺我的文章對您有幫助,請用微信掃描下面二維碼支持博主2元、5元、10元、20元等您想捐的金額吧,狠狠點擊下面給點支持吧,站長非常感激您!手機(jī)微信長按不能支付解決辦法:請將微信支付二維碼保存到相冊,切換到微信,然后點擊微信右上角掃一掃功能,選擇支付二維碼完成支付。

【本文對您有幫助就好】

您的支持是博主寫作最大的動力,如果您喜歡我的文章,感覺我的文章對您有幫助,請用微信掃描上面二維碼支持博主2元、5元、10元、自定義金額等您想捐的金額吧,站長會非常 感謝您的哦!!!

發(fā)表我的評論
最新評論 總共0條評論
主站蜘蛛池模板: 察雅县| 毕节市| 河南省| 嫩江县| 新营市| 藁城市| 安阳市| 兴安县| 江阴市| 西藏| 宝鸡市| 扎囊县| 浙江省| 大兴区| 蒙自县| 名山县| 沛县| 迭部县| 冷水江市| 怀远县| 德江县| 武强县| 靖安县| 德格县| 伊春市| 怀远县| 柳河县| 滕州市| 青冈县| 浑源县| 琼中| 库尔勒市| 林西县| 许昌县| 中牟县| 朝阳区| 新郑市| 同德县| 万盛区| 嫩江县| 呈贡县|