關聯規則挖掘(Association rule mining)是數據挖掘中最活躍的研究方法之一,可以用來發現事情之間的聯系,最早是為了發現超市交易數據庫中不同的商品之間的關系。(啤酒與尿布)
基本概念
1、支持度的定義:support(X-->Y) = |X交Y|/N=集合X與集合Y中的項在一條記錄中同時出現的次數/數據記錄的個數。例如:support({啤酒}-->{尿布}) = 啤酒和尿布同時出現的次數/數據記錄數 = 3/5=60%。
2、自信度的定義:confidence(X-->Y) = |X交Y|/|X| = 集合X與集合Y中的項在一條記錄中同時出現的次數/集合X出現的個數 。例如:confidence({啤酒}-->{尿布}) = 啤酒和尿布同時出現的次數/啤酒出現的次數=3/3=100%;confidence({尿布}-->{啤酒}) = 啤酒和尿布同時出現的次數/尿布出現的次數 = 3/4 = 75%
同時滿足最小支持度閾值(min_sup)和最小置信度閾值(min_conf)的規則稱作強規則 ,如果項集滿足最小支持度,則稱它為頻繁項集
“如何由大型數據庫挖掘關聯規則?”關聯規則的挖掘是一個兩步的過程:
1、找出所有頻繁項集:根據定義,這些項集出現的頻繁性至少和預定義的最小支持計數一樣。
2、由頻繁項集產生強關聯規則:根據定義,這些規則必須滿足最小支持度和最小置信度。
Apriori定律
為了減少頻繁項集的生成時間,我們應該盡早的消除一些完全不可能是頻繁項集的集合,Apriori的兩條定律就是干這事的。
Apriori定律1:如果一個集合是頻繁項集,則它的所有子集都是頻繁項集。舉例:假設一個集合{A,B}是頻繁項集,即A、B同時出現在一條記錄的次數大于等于最小支持度min_support,則它的子集{A},{B}出現次數必定大于等于min_support,即它的子集都是頻繁項集。
Apriori定律2:如果一個集合不是頻繁項集,則它的所有超集都不是頻繁項集。舉例:假設集合{A}不是頻繁項集,即A出現的次數小于min_support,則它的任何超集如{A,B}出現的次數必定小于min_support,因此其超集必定也不是頻繁項集。
上面的圖演示了Apriori算法的過程,注意看由二級頻繁項集生成三級候選項集時,沒有{牛奶,面包,啤酒},那是因為{面包,啤酒}不是二級頻繁項集,這里利用了Apriori定理。最后生成三級頻繁項集后,沒有更高一級的候選項集,因此整個算法結束,{牛奶,面包,尿布}是最大頻繁子集。
Python實現代碼:
Skip to content
Sign up Sign in This repository
Explore
Features
Enterprise
Blog
?Star 0? Fork 0 taizilongxu/datamining
?branch: master? datamining / apriori / apriori.py
hackerxutaizilongxu 20 days ago backup
1 contributor
156 lines (140 sloc)? 6.302 kb RawBlameHistory??
#-*- encoding: UTF-8 -*-
#---------------------------------import------------------------------------
#---------------------------------------------------------------------------
class Apriori(object):
??? def __init__(self, filename, min_support, item_start, item_end):
??????? self.filename = filename
??????? self.min_support = min_support # 最小支持度
??????? self.min_confidence = 50
??????? self.line_num = 0 # item的行數
??????? self.item_start = item_start #? 取哪行的item
??????? self.item_end = item_end
??????? self.location = [[i] for i in range(self.item_end - self.item_start + 1)]
??????? self.support = self.sut(self.location)
??????? self.num = list(sorted(set([j for i in self.location for j in i])))# 記錄item
??????? self.pre_support = [] # 保存前一個support,location,num
??????? self.pre_location = []
??????? self.pre_num = []
??????? self.item_name = [] # 項目名
??????? self.find_item_name()
??????? self.loop()
??????? self.confidence_sup()
??? def deal_line(self, line):
??????? "提取出需要的項"
??????? return [i.strip() for i in line.split(' ') if i][self.item_start - 1:self.item_end]
??? def find_item_name(self):
??????? "根據第一行抽取item_name"
??????? with open(self.filename, 'r') as F:
??????????? for index,line in enumerate(F.readlines()):
??????????????? if index == 0:
??????????????????? self.item_name = self.deal_line(line)
??????????????????? break
??? def sut(self, location):
??????? """
??????? 輸入[[1,2,3],[2,3,4],[1,3,5]...]
??????? 輸出每個位置集的support [123,435,234...]
??????? """
??????? with open(self.filename, 'r') as F:
??????????? support = [0] * len(location)
??????????? for index,line in enumerate(F.readlines()):
??????????????? if index == 0: continue
??????????????? # 提取每信息
??????????????? item_line = self.deal_line(line)
??????????????? for index_num,i in enumerate(location):
??????????????????? flag = 0
??????????????????? for j in i:
??????????????????????? if item_line[j] != 'T':
??????????????????????????? flag = 1
??????????????????????????? break
??????????????????? if not flag:
??????????????????????? support[index_num] += 1
??????????? self.line_num = index # 一共多少行,出去第一行的item_name
??????? return support
??? def select(self, c):
??????? "返回位置"
??????? stack = []
??????? for i in self.location:
??????????? for j in self.num:
??????????????? if j in i:
??????????????????? if len(i) == c:
??????????????????????? stack.append(i)
??????????????? else:
??????????????????? stack.append([j] + i)
??????? # 多重列表去重
??????? import itertools
??????? s = sorted([sorted(i) for i in stack])
??????? location = list(s for s,_ in itertools.groupby(s))
??????? return location
??? def del_location(self, support, location):
??????? "清除不滿足條件的候選集"
??????? # 小于最小支持度的剔除
??????? for index,i in enumerate(support):
??????????? if i < self.line_num * self.min_support / 100:
??????????????? support[index] = 0
??????? # apriori第二條規則,剔除
??????? for index,j in enumerate(location):
??????????? sub_location = [j[:index_loc] + j[index_loc+1:]for index_loc in range(len(j))]
??????????? flag = 0
??????????? for k in sub_location:
??????????????? if k not in self.location:
??????????????????? flag = 1
??????????????????? break
??????????? if flag:
??????????????? support[index] = 0
??????? # 刪除沒用的位置
??????? location = [i for i,j in zip(location,support) if j != 0]
??????? support = [i for i in support if i != 0]
??????? return support, location
??? def loop(self):
??????? "s級頻繁項級的迭代"
??????? s = 2
??????? while True:
??????????? print '-'*80
??????????? print 'The' ,s - 1,'loop'
??????????? print 'location' , self.location
??????????? print 'support' , self.support
??????????? print 'num' , self.num
??????????? print '-'*80
??????????? # 生成下一級候選集
??????????? location = self.select(s)
??????????? support = self.sut(location)
??????????? support, location = self.del_location(support, location)
??????????? num = list(sorted(set([j for i in location for j in i])))
??????????? s += 1
??????????? if? location and support and num:
??????????????? self.pre_num = self.num
??????????????? self.pre_location = self.location
??????????????? self.pre_support = self.support
??????????????? self.num = num
??????????????? self.location = location
??????????????? self.support = support
??????????? else:
??????????????? break
??? def confidence_sup(self):
??????? "計算confidence"
??????? if sum(self.pre_support) == 0:
??????????? print 'min_support error' # 第一次迭代即失敗
??????? else:
??????????? for index_location,each_location in enumerate(self.location):
??????????????? del_num = [each_location[:index] + each_location[index+1:] for index in range(len(each_location))] # 生成上一級頻繁項級
??????????????? del_num = [i for i in del_num if i in self.pre_location] # 刪除不存在上一級頻繁項級子集
??????????????? del_support = [self.pre_support[self.pre_location.index(i)] for i in del_num if i in self.pre_location] # 從上一級支持度查找
??????????????? # print del_num
??????????????? # print self.support[index_location]
??????????????? # print del_support
??????????????? for index,i in enumerate(del_num): # 計算每個關聯規則支持度和自信度
??????????????????? index_support = 0
??????????????????? if len(self.support) != 1:
??????????????????????? index_support = index
??????????????????? support =? float(self.support[index_location])/self.line_num * 100 # 支持度
??????????????????? s = [j for index_item,j in enumerate(self.item_name) if index_item in i]
??????????????????? if del_support[index]:
??????????????????????? confidence = float(self.support[index_location])/del_support[index] * 100
??????????????????????? if confidence > self.min_confidence:
??????????????????????????? print ','.join(s) , '->>' , self.item_name[each_location[index]] , ' min_support: ' , str(support) + '%' , ' min_confidence:' , str(confidence) + '%'
def main():
??? c = Apriori('basket.txt', 14, 3, 13)
??? d = Apriori('simple.txt', 50, 2, 6)
if __name__ == '__main__':
??? main()
############################################################################
Status API Training Shop Blog About
? 2014 GitHub, Inc. Terms Privacy Security Contact
Apriori算法
Apriori(filename, min_support, item_start, item_end)
參數說明
filename:(路徑)文件名
min_support:最小支持度
item_start:item起始位置
item_end:item結束位置
使用例子:
import apriori
c = apriori.Apriori('basket.txt', 11, 3, 13)
輸出:
--------------------------------------------------------------------------------
The 1 loop
location [[0], [1], [2], [3], [4], [5], [6], [7], [8], [9], [10]]
support [299, 183, 177, 303, 204, 302, 293, 287, 184, 292, 276]
num [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
--------------------------------------------------------------------------------
--------------------------------------------------------------------------------
The 2 loop
location [[0, 9], [3, 5], [3, 6], [5, 6], [7, 10]]
support [145, 173, 167, 170, 144]
num [0, 3, 5, 6, 7, 9, 10]
--------------------------------------------------------------------------------
--------------------------------------------------------------------------------
The 3 loop
location [[3, 5, 6]]
support [146]
num [3, 5, 6]
--------------------------------------------------------------------------------
frozenmeal,beer ->> cannedveg? min_support:? 14.6%? min_confidence: 0.858823529412
cannedveg,beer ->> frozenmeal? min_support:? 14.6%? min_confidence: 0.874251497006
cannedveg,frozenmeal ->> beer? min_support:? 14.6%? min_confidence: 0.843930635838
--------------------------------------------------------------------------------
更多文章、技術交流、商務合作、聯系博主
微信掃碼或搜索:z360901061

微信掃一掃加我為好友
QQ號聯系: 360901061
您的支持是博主寫作最大的動力,如果您喜歡我的文章,感覺我的文章對您有幫助,請用微信掃描下面二維碼支持博主2元、5元、10元、20元等您想捐的金額吧,狠狠點擊下面給點支持吧,站長非常感激您!手機微信長按不能支付解決辦法:請將微信支付二維碼保存到相冊,切換到微信,然后點擊微信右上角掃一掃功能,選擇支付二維碼完成支付。
【本文對您有幫助就好】元
