日韩久久久精品,亚洲精品久久久久久久久久久,亚洲欧美一区二区三区国产精品 ,一区二区福利

python

系統(tǒng) 1689 0

sklearn.preprocessing.RobustScaler:

            
              Init signature:
RobustScaler(
    with_centering=True,
    with_scaling=True,
    quantile_range=(25.0, 75.0),
    copy=True,
)
Docstring:     
Scale features using statistics that are robust to outliers.

This Scaler removes the median and scales the data according to
the quantile range (defaults to IQR: Interquartile Range).
The IQR is the range between the 1st quartile (25th quantile)
and the 3rd quartile (75th quantile).

Centering and scaling happen independently on each feature by
computing the relevant statistics on the samples in the training
set. Median and interquartile range are then stored to be used on
later data using the ``transform`` method.

Standardization of a dataset is a common requirement for many
machine learning estimators. Typically this is done by removing the mean
and scaling to unit variance. However, outliers can often influence the
sample mean / variance in a negative way. In such cases, the median and
the interquartile range often give better results.

.. versionadded:: 0.17

Read more in the :ref:`User Guide 
              
                `.

Parameters
----------
with_centering : boolean, True by default
    If True, center the data before scaling.
    This will cause ``transform`` to raise an exception when attempted on
    sparse matrices, because centering them entails building a dense
    matrix which in common use cases is likely to be too large to fit in
    memory.

with_scaling : boolean, True by default
    If True, scale the data to interquartile range.

quantile_range : tuple (q_min, q_max), 0.0 < q_min < q_max < 100.0
    Default: (25.0, 75.0) = (1st quantile, 3rd quantile) = IQR
    Quantile range used to calculate ``scale_``.

    .. versionadded:: 0.18

copy : boolean, optional, default is True
    If False, try to avoid a copy and do inplace scaling instead.
    This is not guaranteed to always work inplace; e.g. if the data is
    not a NumPy array or scipy.sparse CSR matrix, a copy may still be
    returned.

Attributes
----------
center_ : array of floats
    The median value for each feature in the training set.

scale_ : array of floats
    The (scaled) interquartile range for each feature in the training set.

    .. versionadded:: 0.17
       *scale_* attribute.

Examples
--------
>>> from sklearn.preprocessing import RobustScaler
>>> X = [[ 1., -2.,  2.],
...      [ -2.,  1.,  3.],
...      [ 4.,  1., -2.]]
>>> transformer = RobustScaler().fit(X)
>>> transformer  # doctest: +NORMALIZE_WHITESPACE
RobustScaler(copy=True, quantile_range=(25.0, 75.0), with_centering=True,
       with_scaling=True)
>>> transformer.transform(X)
array([[ 0. , -2. ,  0. ],
       [-1. ,  0. ,  0.4],
       [ 1. ,  0. , -1.6]])

See also
--------
robust_scale: Equivalent function without the estimator API.

:class:`sklearn.decomposition.PCA`
    Further removes the linear correlation across features with
    'whiten=True'.

Notes
-----
For a comparison of the different scalers, transformers, and normalizers,
see :ref:`examples/preprocessing/plot_all_scaling.py

                
                  `.

https://en.wikipedia.org/wiki/Median
https://en.wikipedia.org/wiki/Interquartile_range
File:           c:\users\huawei\appdata\local\programs\python\python36\lib\site-packages\sklearn\preprocessing\data.py
Type:           type
Subclasses:     

                
              
            
          

更多文章、技術(shù)交流、商務(wù)合作、聯(lián)系博主

微信掃碼或搜索:z360901061

微信掃一掃加我為好友

QQ號(hào)聯(lián)系: 360901061

您的支持是博主寫作最大的動(dòng)力,如果您喜歡我的文章,感覺我的文章對(duì)您有幫助,請(qǐng)用微信掃描下面二維碼支持博主2元、5元、10元、20元等您想捐的金額吧,狠狠點(diǎn)擊下面給點(diǎn)支持吧,站長(zhǎng)非常感激您!手機(jī)微信長(zhǎng)按不能支付解決辦法:請(qǐng)將微信支付二維碼保存到相冊(cè),切換到微信,然后點(diǎn)擊微信右上角掃一掃功能,選擇支付二維碼完成支付。

【本文對(duì)您有幫助就好】

您的支持是博主寫作最大的動(dòng)力,如果您喜歡我的文章,感覺我的文章對(duì)您有幫助,請(qǐng)用微信掃描上面二維碼支持博主2元、5元、10元、自定義金額等您想捐的金額吧,站長(zhǎng)會(huì)非常 感謝您的哦!!!

發(fā)表我的評(píng)論
最新評(píng)論 總共0條評(píng)論
主站蜘蛛池模板: 肃北| 丰顺县| 南雄市| 寿光市| 玛多县| 台北县| 泰安市| 西华县| 原阳县| 陆河县| 长子县| 法库县| 麦盖提县| 昂仁县| 蒲城县| 那坡县| 延安市| 义乌市| 永济市| 米脂县| 株洲县| 讷河市| 德令哈市| 桦甸市| 阳谷县| 巴楚县| 临邑县| 石城县| 绥江县| 温宿县| 沛县| 新密市| 龙海市| 宜宾县| 深水埗区| 中西区| 新宾| 岫岩| 乐昌市| 灵丘县| 磴口县|