klearn python API
- LinearRegression
from sklearn.linear_model import LinearRegression # 線性回歸 #
module = LinearRegression()
module.fit(x, y)
module.score(x, y)
module.predict(test)
- LogisticRegression
from sklearn.linear_model import LogisticRegression # 邏輯回歸 #
module = LogisticRegression()
module.fit(x, y)
module.score(x, y)
module.predict(test)
- KNN
from sklearn.neighbors import KNeighborsClassifier #K近鄰#
from sklearn.neighbors import KNeighborsRegressor
module = KNeighborsClassifier(n_neighbors=6)
module.fit(x, y)
predicted = module.predict(test)
predicted = module.predict_proba(test)
- SVM
from sklearn import svm #支持向量機#
module = svm.SVC()
module.fit(x, y)
module.score(x, y)
module.predict(test)
module.predict_proba(test)
- naive_bayes
from sklearn.naive_bayes import GaussianNB #樸素貝葉斯分類器#
module = GaussianNB()
module.fit(x, y)
predicted = module.predict(test)
- DecisionTree
from sklearn import tree #決策樹分類器#
module = tree.DecisionTreeClassifier(criterion='gini')
module.fit(x, y)
module.score(x, y)
module.predict(test)
- K-Means
from sklearn.cluster import KMeans #kmeans聚類#
module = KMeans(n_clusters=3, random_state=0)
module.fit(x, y)
module.predict(test)
- RandomForest
from sklearn.ensemble import RandomForestClassifier #隨機森林#
from sklearn.ensemble import RandomForestRegressor
module = RandomForestClassifier()
module.fit(x, y)
module.predict(test)
- GBDT
from sklearn.ensemble import GradientBoostingClassifier #Gradient Boosting 和 AdaBoost算法#
from sklearn.ensemble import GradientBoostingRegressor
module = GradientBoostingClassifier(n_estimators=100, learning_rate=0.1, max_depth=1, random_state=0)
module.fit(x, y)
module.predict(test)
- PCA
from sklearn.decomposition import PCA #PCA特征降維#
train_reduced = PCA.fit_transform(train)
test_reduced = PCA.transform(test)
References
更多文章、技術交流、商務合作、聯系博主
微信掃碼或搜索:z360901061

微信掃一掃加我為好友
QQ號聯系: 360901061
您的支持是博主寫作最大的動力,如果您喜歡我的文章,感覺我的文章對您有幫助,請用微信掃描下面二維碼支持博主2元、5元、10元、20元等您想捐的金額吧,狠狠點擊下面給點支持吧,站長非常感激您!手機微信長按不能支付解決辦法:請將微信支付二維碼保存到相冊,切換到微信,然后點擊微信右上角掃一掃功能,選擇支付二維碼完成支付。
【本文對您有幫助就好】元
