一 數(shù)據(jù)結(jié)構(gòu)和GIL
1 queue
標(biāo)準(zhǔn)庫queue模塊,提供FIFO的queue、LIFO的隊(duì)列,優(yōu)先隊(duì)列
Queue 類是線程安全的,適用于多線程間安全的交換數(shù)據(jù),內(nèi)部使用了Lock和Condition
為什么說容器的大小不準(zhǔn)確,其原因是如果不加鎖,是不可能獲取到準(zhǔn)確的大小的,因?yàn)槟銊傋x取了一個(gè)大小,還沒取走,有可能被就被其他線程修改了,queue類的size雖然加了鎖,但是依然不能保證立即get,put就能成功,因?yàn)樽x取大小和get,put方法是分來的。
2 GIL
1 簡介
全局解釋器鎖,進(jìn)程級(jí)別的鎖GIL
Cpython在解釋器進(jìn)程中有一把鎖,叫做GIL全局解釋器鎖。GIL 保證Cpython進(jìn)程中,當(dāng)前時(shí)刻只有一個(gè)線程執(zhí)行代碼,甚至在多核情況下,也是如此。
2 IO 密集型和CPU密集型
Cpython中
IO 密集型,由于線程阻塞,就會(huì)調(diào)度其他線程
CPU密集型,當(dāng)前線程可能連續(xù)獲取GIL,導(dǎo)致其他線程幾乎無法使用CPU,若要喚醒其他線程,則需要準(zhǔn)備數(shù)據(jù),其代價(jià)是高昂的。
IO 密集型,多線程解決,CPU密集型,多進(jìn)程解決,繞開GIL。
python中絕大多數(shù)內(nèi)置數(shù)據(jù)結(jié)構(gòu)的讀寫操作都是原子操作
由于GIL 的存在,python的內(nèi)置數(shù)據(jù)類型在多線程編程的時(shí)候就變得安全了,但是實(shí)際上他們本身不是線程安全類型的
3 保留GIL 原因
Guido堅(jiān)持的簡單哲學(xué),對(duì)于初學(xué)者門檻低,不需要高深的系統(tǒng)知識(shí)也能安全,簡單的使用python。
而移除GIL。會(huì)降低Cpython單線程的執(zhí)行效率。
4 驗(yàn)證其是否是單線程
相關(guān)實(shí)例
import logging
import datetime
logging.basicConfig(level=logging.INFO,format="%(asctime)s %(threadName)s %(message)s ")
start=datetime.datetime.now()
def calc():
sum=0
for _ in range(1000000000):
sum+=1
calc()
calc()
calc()
calc()
calc()
delta=(datetime.datetime.now()-start).total_seconds()
logging.info(delta)
多線程模式下的計(jì)算結(jié)果
import logging
import datetime
import threading
logging.basicConfig(level=logging.INFO,format="%(asctime)s %(threadName)s %(message)s ")
start=datetime.datetime.now()
def calc():
sum=0
for _ in range(1000000000):
sum+=1
lst=[]
for _ in range(5):
t=threading.Thread(target=calc)
t.start()
lst.append(t)
for t in lst:
t.join()
delta=(datetime.datetime.now()-start).total_seconds()
print (delta)
結(jié)果如下
從這兩個(gè)程序來看,Cpython中多線程根本沒有優(yōu)勢,和一個(gè)線程執(zhí)行的時(shí)間相當(dāng),因?yàn)榇嬖贕IL
二 多進(jìn)程
1 概念
1 多進(jìn)程描述
由于python中的GIL ,多線程不是CPU密集型程序的最好選擇
多進(jìn)程可以在完全獨(dú)立的進(jìn)程中運(yùn)行程序,可以充分利用多處理器
但是進(jìn)程本身的隔離帶來數(shù)據(jù)不共享也是一個(gè)問題,且線程比進(jìn)程輕量的多
多進(jìn)程也是解決并發(fā)的一種手段
2 進(jìn)程和線程的異同
相同點(diǎn):
進(jìn)程是可以終止的,線程是不能通過命令終止的,線程的終止要么拋出異常,要么程序本身執(zhí)行完成。
進(jìn)程間同步提供了和線程同步一樣的類,使用方式也是一樣的,使用效果也是類似,不過,進(jìn)程間同步的代價(jià)要高于線程,而且底層實(shí)現(xiàn)不同。
multiprocessing 還提供了共享內(nèi)存,服務(wù)器進(jìn)程來共享數(shù)據(jù),還提供了queue隊(duì)列,匹配管道用于進(jìn)程間通信
不同點(diǎn)
通信方式不同
1 多進(jìn)程就是啟用多個(gè)解釋器進(jìn)程,進(jìn)程間通信必須序列化,反序列化
2 數(shù)據(jù)的安全性問題多進(jìn)程最好是在main中執(zhí)行
多線程已經(jīng)將數(shù)據(jù)進(jìn)行處理了,其不需要再次進(jìn)行序列化了多進(jìn)程傳遞必須序列化和反序列化。
3 進(jìn)程應(yīng)用
遠(yuǎn)程調(diào)用,RPC,跨網(wǎng)絡(luò)
2 參數(shù)介紹
multiprocessing中的process類
process 類遵循了Thread類的API,減少了學(xué)習(xí)難度
不同進(jìn)程可以完全調(diào)度到不同的CPU上執(zhí)行IO 密集型最好使用多線程
CPU 密集型最好使用多進(jìn)程進(jìn)程提供的相關(guān)屬性
名稱 | 含義 |
---|---|
pid | 進(jìn)程ID |
exitcode | 進(jìn)程退出的狀態(tài)碼 |
terminate() | 終止指定進(jìn)程 |
3 實(shí)例
import logging
import datetime
import multiprocessing
logging.basicConfig(level=logging.INFO,format="%(asctime)s %(threadName)s %(message)s ")
start=datetime.datetime.now()
def calc(i):
sum=0
for _ in range(1000000000):
sum+=1
lst=[]
for i in range(5):
p=multiprocessing.Process(target=calc,args=(i,),name="P-{}".format(i))
p.start()
lst.append(p)
for p in lst:
p.join()
delta=(datetime.datetime.now()-start).total_seconds()
print (delta)
結(jié)果如下
多進(jìn)程本身避開了進(jìn)程和進(jìn)程之間調(diào)度需要的時(shí)間,多核心都使用了,此處存在CPU的調(diào)度問題
多進(jìn)程對(duì)CPU的提升是顯而易見的。
單線程,多線程都跑了很長時(shí)間,而多進(jìn)程只是用了1分半,是真正的并行
4 進(jìn)程池相關(guān)
import logging
import datetime
import multiprocessing
logging.basicConfig(level=logging.INFO,format="%(asctime)s %(threadName)s %(message)s ")
start=datetime.datetime.now()
def calc(i):
sum=0
for _ in range(1000000000):
sum+=1
print (i,sum)
if __name__=='__main__':
start=datetime.datetime.now()
p=multiprocessing.Pool(5) # 此處用于初始化進(jìn)程池,其池中的資源是可以復(fù)用的
for i in range(5):
p.apply_async(calc,args=(i,))
p.close() # 下面要執(zhí)行join,上面必須先close
p.join()
delta=(datetime.datetime.now()-start).total_seconds()
print (delta)
結(jié)果如下
進(jìn)程創(chuàng)建的多,使用進(jìn)程池進(jìn)行處理還是一種比較好的處理方式
5 多進(jìn)程和多線程的選擇
1 選擇
1 CPU 密集型
Cpython 中使用了GIL,多線程的時(shí)候互相競爭,且多核優(yōu)勢不能發(fā)揮,python使用多進(jìn)程效率更高2 IO密集型
適合使用多線程,減少IO序列化開銷,且在IO等待時(shí),切換到其他線程繼續(xù)執(zhí)行,效率不錯(cuò),當(dāng)然多進(jìn)程也適用于IO密集型
2 應(yīng)用
請求/應(yīng)答模型: WEB應(yīng)用中常見的處理模型
master啟動(dòng)多個(gè)worker工作進(jìn)程,一般和CPU數(shù)目相同
worker工作進(jìn)程中啟動(dòng)多個(gè)線程,提高并發(fā)處理能力,worker處理用戶的請求,往往需要等待數(shù)據(jù)
這就是nginx的工作模式工作進(jìn)程一般都和CPU核數(shù)相同,CPU的親原性,進(jìn)程在CPU的遷移成本比較高。
三 concurrent包
1 概念
concurrent.futures
3.2 版本引入的模塊
異步并行任務(wù)編程模塊,提供一個(gè)高級(jí)的異步可執(zhí)行的便利接口提供了2個(gè)池執(zhí)行器
ThreadPoolExecutor 異步調(diào)用的線程池的Executor
ProcessPoolExecutor 異步調(diào)用進(jìn)程池的Executor
2 參數(shù)詳解
方法 | 含義 |
---|---|
ThreadPoolExecutor(max_workers=1) | 池中至多創(chuàng)建max_workers個(gè)線程的池來同時(shí)異步執(zhí)行,返回Executor實(shí)例 |
submit(fn,*args,**kwagrs) | 提交執(zhí)行的函數(shù)及參數(shù),返回Future實(shí)例 |
shutdown(wait=True) | 清理池 |
Future 類
方法 | 含義 |
---|---|
result() | 可以查看調(diào)用的返回結(jié)果 |
done() | 如果調(diào)用被成功的取消或者執(zhí)行完成,則返回為True |
cancelled() | 如果調(diào)用被成功取消,返回True |
running() | 如果正在運(yùn)行且不能被取消,則返回True |
cancel() | 嘗試取消調(diào)用,如果已經(jīng)執(zhí)行且不能取消則返回False,否則返回True |
result(timeout=None) | 取返回的結(jié)果,超時(shí)時(shí)為None,一直等待返回,超時(shí)設(shè)置到期,拋出concurrent.futures.TimeoutError異常 |
execption(timeout=None) | 取返回的異常,超時(shí)為None,一直等待返回,超時(shí)設(shè)置到期,拋出concurrent.futures.TimeoutError異常 |
3 線程池相關(guān)實(shí)例
import logging
import threading
from concurrent import futures
import logging
import time
logging.basicConfig(level=logging.INFO,format="%(asctime)-15s\t [%(processName)s:%(threadName)s,%(process)d:%(thread)8d] %(message)s")
def worker(n): # 定義未來執(zhí)行的任務(wù)
logging.info("begin to work{}".format(n))
time.sleep(5)
logging.info("finished{}".format(n))
# 創(chuàng)建一個(gè)線程池,池容量為3
executor=futures.ThreadPoolExecutor(max_workers=3)
fs=[]
for i in range(3):
f=executor.submit(worker,i) # 傳入?yún)?shù),返回Future對(duì)象
fs.append(f)
for i in range(3,6):
f=executor.submit(worker,i) # 傳入?yún)?shù),返回Future對(duì)象
fs.append(f)
while True:
time.sleep(2)
logging.info(threading.enumerate()) #返回存活線程列表
flag=True
for f in fs:
logging.info(f.done()) # 如果被成功調(diào)用或取消完成,此處返回為True
flag=flag and f.done() # 若都調(diào)用成功,則返回為True,否則則返回為False
if flag:
executor.shutdown() # 如果全部調(diào)用成功,則需要清理池
logging.info(threading.enumerate())
break
結(jié)果如下
其線程池中的線程是持續(xù)使用的,一旦創(chuàng)建好的線程,其不會(huì)變化,唯一不好的就是線程名未發(fā)生變化,但其最多影響了打印效果
4 進(jìn)程池相關(guān)實(shí)例
import logging
import threading
from concurrent import futures
import logging
import time
logging.basicConfig(level=logging.INFO,format="%(asctime)-15s\t [%(processName)s:%(threadName)s,%(process)d:%(thread)8d] %(message)s")
def worker(n): # 定義未來執(zhí)行的任務(wù)
logging.info("begin to work{}".format(n))
time.sleep(5)
logging.info("finished{}".format(n))
# 創(chuàng)建一個(gè)進(jìn)程池,池容量為3
executor=futures.ProcessPoolExecutor(max_workers=3)
fs=[]
for i in range(3):
f=executor.submit(worker,i) # 傳入?yún)?shù),返回Future對(duì)象
fs.append(f)
for i in range(3,6):
f=executor.submit(worker,i) # 傳入?yún)?shù),返回Future對(duì)象
fs.append(f)
while True:
time.sleep(2)
flag=True
for f in fs:
logging.info(f.done()) # 如果被成功調(diào)用或取消完成,此處返回為True
flag=flag and f.done() # 若都調(diào)用成功,則返回為True,否則則返回為False
if flag:
executor.shutdown() # 如果全部調(diào)用成功,則需要清理池
break
結(jié)果如下
5 支持上下文管理
concurrent.futures.ProcessPoolExecutor 繼承自concurrent.futures.base.Executor,而父類有enter,_exit方法,其是支持上下文管理的,可以使用with語句
import logging
import threading
from concurrent import futures
import logging
import time
logging.basicConfig(level=logging.INFO,format="%(asctime)-15s\t [%(processName)s:%(threadName)s,%(process)d:%(thread)8d] %(message)s")
def worker(n): # 定義未來執(zhí)行的任務(wù)
logging.info("begin to work{}".format(n))
time.sleep(5)
logging.info("finished{}".format(n))
fs=[]
with futures.ProcessPoolExecutor(max_workers=3) as executor:
for i in range(6):
futures=executor.submit(worker,i)
fs.append(futures)
while True:
time.sleep(2)
flag=True
for f in fs:
logging.info(f.done()) # 如果被成功調(diào)用或取消完成,此處返回為True
flag=flag and f.done() # 若都調(diào)用成功,則返回為True,否則則返回為False
if flag:
executor.shutdown() # 如果全部調(diào)用成功,則需要清理池
break
結(jié)果如下
6 總結(jié)
統(tǒng)一了線程池,進(jìn)程池的調(diào)用,簡化了編程,是python簡單的思想哲學(xué)的提現(xiàn)
唯一缺點(diǎn): 無法設(shè)置線程名稱
更多文章、技術(shù)交流、商務(wù)合作、聯(lián)系博主
微信掃碼或搜索:z360901061

微信掃一掃加我為好友
QQ號(hào)聯(lián)系: 360901061
您的支持是博主寫作最大的動(dòng)力,如果您喜歡我的文章,感覺我的文章對(duì)您有幫助,請用微信掃描下面二維碼支持博主2元、5元、10元、20元等您想捐的金額吧,狠狠點(diǎn)擊下面給點(diǎn)支持吧,站長非常感激您!手機(jī)微信長按不能支付解決辦法:請將微信支付二維碼保存到相冊,切換到微信,然后點(diǎn)擊微信右上角掃一掃功能,選擇支付二維碼完成支付。
【本文對(duì)您有幫助就好】元
