?
%控制感知機(jī)的學(xué)習(xí)過(guò)程,學(xué)習(xí)AND運(yùn)算
P=[0 1 0 1 1;1 1 1 0 0];
T=[0 1 0 0 0];
net = newp([0 1;0 1],1);
net=init(net);
y=sim(net,P);
e=T-y;
while (mae(e)>0.0015)
?? dw=learnp(w,P,[],[],[],[],e,[],[],[],[],[])
?? db=learnp(b,ones(1,5),[],[],[],[],e,[],[],[],[],[])
?? %每次學(xué)習(xí)完后,會(huì)返回需要的調(diào)整權(quán)值矩陣和閾值矩陣
?? w=w+dw
?? b=b+db
?? net.iw{1,1}=w
?? net.b{1}=b??
?? y=sim(net,P);
?? e=T-y
end
?
?
learnp用于感知器神經(jīng)網(wǎng)絡(luò)權(quán)值和閾值的學(xué)習(xí),學(xué)習(xí)規(guī)則是調(diào)整網(wǎng)絡(luò)的權(quán)值和閾值,使網(wǎng)絡(luò)平均絕對(duì)誤差性能最小,以便實(shí)現(xiàn)輸入向量的分類
help learnp
?LEARNP Perceptron weight/bias learning function.
?
?? Syntax
??
???? [dW,LS] = learnp(W,P,Z,N,A,T,E,gW,gA,D,LP,LS)
???? [db,LS] = learnp(b,ones(1,Q),Z,N,A,T,E,gW,gA,D,LP,LS)
???? info = learnp(code)
?
?? Description
?
???? LEARNP is the perceptron weight/bias learning function.
?
???? LEARNP(W,P,Z,N,A,T,E,gW,gA,D,LP,LS) takes several inputs,
?????? W? - SxR weight matrix (or b, an Sx1 bias vector).
?????? P? - RxQ input vectors (or ones(1,Q)).
?????? Z? - SxQ weighted input vectors.
?????? N? - SxQ net input vectors.
?????? A? - SxQ output vectors.
?????? T? - SxQ layer target vectors.
?????? E? - SxQ layer error vectors.
?????? gW - SxR gradient with respect to performance.
?????? gA - SxQ output gradient with respect to performance.
?????? D? - SxS neuron distances.
?????? LP - Learning parameters, none, LP = [].
?????? LS - Learning state, initially should be = [].
???? and returns,
?????? dW - SxR weight (or bias) change matrix.
?????? LS - New learning state.
?
???? LEARNP(CODE) returns useful information for each CODE string:
?????? 'pnames'??? - Returns names of learning parameters.
?????? 'pdefaults' - Returns default learning parameters.
?????? 'needg'???? - Returns 1 if this function uses gW or gA.
?
?? Examples
?
???? Here we define a random input P and error E to a layer
???? with a 2-element input and 3 neurons.
?
?????? p = rand(2,1);
?????? e = rand(3,1);
?
???? Since LEARNP only needs these values to calculate a weight
???? change (see Algorithm below), we will use them to do so.
?
?????? dW = learnp([],p,[],[],[],[],e,[],[],[],[],[])
?
?? Network Use
?
???? You can create a standard network that uses LEARNP with NEWP.
?
???? To prepare the weights and the bias of layer i of a custom network
???? to learn with LEARNP:
???? 1) Set NET.trainFcn to 'trainb'.
??????? (NET.trainParam will automatically become TRAINB's default parameters.)
???? 2) Set NET.adaptFcn to 'trains'.
??????? (NET.adaptParam will automatically become TRAINS's default parameters.)
???? 3) Set each NET.inputWeights{i,j}.learnFcn to 'learnp'.
??????? Set each NET.layerWeights{i,j}.learnFcn to 'learnp'.
??????? Set NET.biases{i}.learnFcn to 'learnp'.
??????? (Each weight and bias learning parameter property will automatically
??????? become the empty matrix since LEARNP has no learning parameters.)
?
???? To train the network (or enable it to adapt):
???? 1) Set NET.trainParam (NET.adaptParam) properties to desired values.
???? 2) Call TRAIN (ADAPT).
?
???? See NEWP for adaption and training examples.
?
?? Algorithm
?
???? LEARNP calculates the weight change dW for a given neuron from the
???? neuron's input P and error E according to the perceptron learning rule:
?
?????? dw =? 0,? if e =? 0
????????? =? p', if e =? 1
????????? = -p', if e = -1
?
???? This can be summarized as:
?
?????? dw = e*p'
?
?
?
?
?
?
?
?
?
?
>> plotpv(P,T)
>> plotpc(net.iw{1,1},net.b{1})
?
更多文章、技術(shù)交流、商務(wù)合作、聯(lián)系博主
微信掃碼或搜索:z360901061

微信掃一掃加我為好友
QQ號(hào)聯(lián)系: 360901061
您的支持是博主寫作最大的動(dòng)力,如果您喜歡我的文章,感覺(jué)我的文章對(duì)您有幫助,請(qǐng)用微信掃描下面二維碼支持博主2元、5元、10元、20元等您想捐的金額吧,狠狠點(diǎn)擊下面給點(diǎn)支持吧,站長(zhǎng)非常感激您!手機(jī)微信長(zhǎng)按不能支付解決辦法:請(qǐng)將微信支付二維碼保存到相冊(cè),切換到微信,然后點(diǎn)擊微信右上角掃一掃功能,選擇支付二維碼完成支付。
【本文對(duì)您有幫助就好】元
